Package: madgrad 0.1.0
madgrad: 'MADGRAD' Method for Stochastic Optimization
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a 'best-of-both-worlds' optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad() implementation is provided based on Defazio et al (2020) <arxiv:2101.11075>.
Authors:
madgrad_0.1.0.tar.gz
madgrad_0.1.0.zip(r-4.5)madgrad_0.1.0.zip(r-4.4)madgrad_0.1.0.zip(r-4.3)
madgrad_0.1.0.tgz(r-4.4-any)madgrad_0.1.0.tgz(r-4.3-any)
madgrad_0.1.0.tar.gz(r-4.5-noble)madgrad_0.1.0.tar.gz(r-4.4-noble)
madgrad_0.1.0.tgz(r-4.4-emscripten)madgrad_0.1.0.tgz(r-4.3-emscripten)
madgrad.pdf |madgrad.html✨
madgrad/json (API)
# Install 'madgrad' in R: |
install.packages('madgrad', repos = c('https://dfalbel.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:40be6a66fe. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | NOTE | Nov 16 2024 |
R-4.5-linux | NOTE | Nov 16 2024 |
R-4.4-win | NOTE | Nov 16 2024 |
R-4.4-mac | NOTE | Nov 16 2024 |
R-4.3-win | NOTE | Nov 16 2024 |
R-4.3-mac | NOTE | Nov 16 2024 |
Exports:optim_madgrad
Dependencies:bitbit64callrclicorodescellipsisgluejsonlitemagrittrprocessxpsR6Rcpprlangsafetensorstorchwithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization. | optim_madgrad |